Algorithm

Model Dermatology has been validated in several academic studies. The performance was comparable with that of dermatologists in the experimental settings when the diagnosis was made solely with clinical photographs. For diagnosing suspected skin lesions, the performance was comparable with that of dermatology residents in the real-world setting.

  • Studies related with the algorithm
  1. Assessment of Deep Neural Networks for the Diagnosis of Benign and Malignant Skin Neoplasms in Comparison with Dermatologists: A Retrospective Validation Study. PLOS Medicine, 2020
  2. Performance of a deep neural network in teledermatology: a singleā€center prospective diagnostic study. J Eur Acad Dermatol Venereol. 2020
  3. Keratinocytic Skin Cancer Detection on the Face using Region-based Convolutional Neural Network. JAMA Dermatol. 2019
  4. Seems to be low, but is it really poor? : Need for Cohort and Comparative studies to Clarify Performance of Deep Neural Networks. J Invest Dermatol. 2020
  5. Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. J Invest Dermatol. 2020
  6. Augment Intelligence Dermatology : Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J Invest Dermatol. 2020
  7. Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset. J Invest Dermatol. 2018
  8. Automated Dermatological Diagnosis: Hype or Reality? J Invest Dermatol. 2018
  9. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018
  10. Augmenting the Accuracy of Trainee Doctors in Diagnosing Skin Neoplasms in a Real-World Setting: A Prospective Before and After Study. PLOS One, in-press